Topics in algorithmic, enumerative and geometric combinatorics

نویسنده

  • Ragnar Freij
چکیده

This thesis presents five papers, studying enumerative and extremal problems on combinatorial structures. The first paper studies Forman’s discrete Morse theory in the case where a group acts on the underlying complex. We generalize the notion of a Morse matching, and obtain a theory that can be used to simplify the description of the G-homotopy type of a simplicial complex. As an application, we determine the S2 × Sn−2-homotopy type of the complex of non-connected graphs on n nodes. In the introduction, connections are drawn between the first paper and the evasiveness conjecture for monotone graph properties. In the second paper, we investigate Hansen polytopes of split graphs. By applying a partitioning technique, the number of nonempty faces is counted, and in particular we confirm Kalai’s 3-conjecture for such polytopes. Furthermore, a characterization of exactly which Hansen polytopes are also Hanner polytopes is given. We end by constructing an interesting class of Hansen polytopes having very few faces and yet not being Hanner. The third paper studies the problem of packing a pattern as densely as possible into compositions. We are able to find the packing density for some classes of generalized patterns, including all the three letter patterns. In the fourth paper, we present combinatorial proofs of the enumeration of derangements with descents in prescribed positions. To this end, we consider fixed point λ-coloured permutations, which are easily enumerated. Several formulae regarding these numbers are given, as well as a generalisation of Euler’s difference tables. We also prove that except in a trivial special case, the event that π has descents in a set S of positions is positively correlated with the event that π is a derangement, if π is chosen uniformly in Sn. The fifth paper solves a partially ordered generalization of the famous secretary problem. The elements of a finite nonempty partially ordered set are exposed in uniform random order to a selector who, at any given time, can see the relative order of the exposed elements. The selector’s task is to choose

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Advances in Algebraic and Enumerative Combinatorics

Algebraic and enumerative combinatorics is concerned with objects that have both a combinatorial and an algebraic interpretation. It is a highly active area of the mathematical sciences, with many connections and applications to other areas, including algebraic geometry, representation theory, topology, mathematical physics and statistical mechanics. Enumerative questions arise in the mathemati...

متن کامل

Mathematisches Forschungsinstitut Oberwolfach Report No

Enumerative Combinatorics focusses on the exact and asymptotic counting of combinatorial objects. It is strongly connected to the probabilistic analysis of large combinatorial structures and has fruitful connections to several disciplines, including statistical physics, algebraic combinatorics, graph theory and computer science. This workshop brought together experts from all these various fiel...

متن کامل

Partition Analysis, Modular Functions, and Computer Algebra

This article describes recent developments connecting problems of enumerative combinatorics, constrained by linear systems of Diophantine inequalities, with number theory topics like partitions, partition congruences, and q-series identities. Special emphasis is put on the role of computer algebra algorithms. The presentation is intended for a broader audience; to this end, elementary introduct...

متن کامل

Permutations Richard

Permutations of finite sets play a central role in algebraic and enumerative combinatorics. In addition to having many interesting enumerative properties per se, permutations also arise in almost every area of mathematics and indeed in all the sciences. Here we will discuss three different topics involving permutations, focusing on combinatorics but also giving some hints about connections with...

متن کامل

Algebraic and geometric methods in enumerative combinatorics

Enumerative combinatorics is about counting. The typical question is to find the number of objects with a given set of properties. However, enumerative combinatorics is not just about counting. In “real life”, when we talk about counting, we imagine lining up a set of objects and counting them off: 1, 2, 3, . . .. However, families of combinatorial objects do not come to us in a natural linear ...

متن کامل

Chromatic Quasisymmetric Functions and Hessenberg Varieties

We discuss three distinct topics of independent interest; one in enumerative combinatorics, one in symmetric function theory, and one in algebraic geometry. The topic in enumerative combinatorics concerns a q-analog of a generalization of the Eulerian polynomials, the one in symmetric function theory deals with a refinement of the chromatic symmetric functions of Stanley, and the one in algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012